Application of Robust Statistics to Asset Allocation Models

نویسندگان

  • Xinfeng Zhou
  • Roy E. Welsch
  • James B. Orlin
  • Edward Pennell
چکیده

Many strategies for asset allocation involve the computation of expected returns and the covariance or correlation matrix of financial instruments returns. How much of each instrument to own is determined by an attempt to minimize risk (the variance of linear combinations of investments in these financial assets) subject to various constraints such as a given level of return, concentration limits, etc. The expected returns and the covariance matrix contain many parameters to estimate and two main problems arise. First, the data will very likely have outliers that will seriously affect the covariance matrix. Second, with so many parameters to estimate, a large number of observations are required and the nature of markets may change substantially over such a long period. In this thesis we use robust covariance procedures, such as FAST-MCD, quadrant-correlation-based covariance and 2D-Huber-based covariance, to address the first problem and regularization (Bayesian) methods that fully utilize the market weights of all assets for the second. High breakdown affine equivariant robust methods are effective, but tend to be costly when cross-validation is required to determine regularization parameters. We, therefore, also consider non-affine invariant robust covariance estimation. When back-tested on market data, these methods appear to be effective in improving portfolio performance. In conclusion, robust asset allocation methods have great potential to improve risk-adjusted portfolio returns and therefore deserve further exploration in investment management research. Thesis Supervisor: Roy E. Welsch Title: Professor of Management Science, Statistics, and Engineering Systems Thesis Supervisor: George Verghese Title: Professor of Electrical Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Knapsack Based Constrained Portfolio Optimization

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...

متن کامل

Robust portfolio asset allocation and risk measures

Many financial optimization problems involve future values of security prices, interest rates and exchange rates which are not known in advance, but can only be forecast or estimated. Several methodologies have therefore been proposed to handle the uncertainty in financial optimization problems. One such methodology is Robust Statistics, which addresses the problem of making estimates of the un...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

A Multi-district Asset Protection Problem with Time Windows for Disaster Management

One of the most important goals of disaster management teams is to protect the assets and infrastructures of the community in the event of accidents such as wildfires and floods. This issue requires appropriate operations of all disaster management teams and analysis of available information for suitable decision making and consequently timely response. A mixed integer mathematical model is pre...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006